3.2.89 \(\int (a+b \text {sech}^2(x))^{3/2} \tanh (x) \, dx\) [189]

Optimal. Leaf size=57 \[ a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a}}\right )-a \sqrt {a+b \text {sech}^2(x)}-\frac {1}{3} \left (a+b \text {sech}^2(x)\right )^{3/2} \]

[Out]

a^(3/2)*arctanh((a+b*sech(x)^2)^(1/2)/a^(1/2))-1/3*(a+b*sech(x)^2)^(3/2)-a*(a+b*sech(x)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 57, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {4224, 272, 52, 65, 214} \begin {gather*} a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a}}\right )-a \sqrt {a+b \text {sech}^2(x)}-\frac {1}{3} \left (a+b \text {sech}^2(x)\right )^{3/2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Sech[x]^2)^(3/2)*Tanh[x],x]

[Out]

a^(3/2)*ArcTanh[Sqrt[a + b*Sech[x]^2]/Sqrt[a]] - a*Sqrt[a + b*Sech[x]^2] - (a + b*Sech[x]^2)^(3/2)/3

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 4224

Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Sec[e + f*x], x]}, Dist[1/f, Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^n)^p/x)
, x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ[
n, 2] || EqQ[n, 4] || IGtQ[p, 0] || IntegersQ[2*n, p])

Rubi steps

\begin {align*} \int \left (a+b \text {sech}^2(x)\right )^{3/2} \tanh (x) \, dx &=-\text {Subst}\left (\int \frac {\left (a+b x^2\right )^{3/2}}{x} \, dx,x,\text {sech}(x)\right )\\ &=-\left (\frac {1}{2} \text {Subst}\left (\int \frac {(a+b x)^{3/2}}{x} \, dx,x,\text {sech}^2(x)\right )\right )\\ &=-\frac {1}{3} \left (a+b \text {sech}^2(x)\right )^{3/2}-\frac {1}{2} a \text {Subst}\left (\int \frac {\sqrt {a+b x}}{x} \, dx,x,\text {sech}^2(x)\right )\\ &=-a \sqrt {a+b \text {sech}^2(x)}-\frac {1}{3} \left (a+b \text {sech}^2(x)\right )^{3/2}-\frac {1}{2} a^2 \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\text {sech}^2(x)\right )\\ &=-a \sqrt {a+b \text {sech}^2(x)}-\frac {1}{3} \left (a+b \text {sech}^2(x)\right )^{3/2}-\frac {a^2 \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \text {sech}^2(x)}\right )}{b}\\ &=a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+b \text {sech}^2(x)}}{\sqrt {a}}\right )-a \sqrt {a+b \text {sech}^2(x)}-\frac {1}{3} \left (a+b \text {sech}^2(x)\right )^{3/2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.08, size = 65, normalized size = 1.14 \begin {gather*} -\frac {2 b \, _2F_1\left (-\frac {3}{2},-\frac {3}{2};-\frac {1}{2};-\frac {a \cosh ^2(x)}{b}\right ) \left (a+b \text {sech}^2(x)\right )^{3/2}}{3 \sqrt {1+\frac {a \cosh ^2(x)}{b}} (a+2 b+a \cosh (2 x))} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sech[x]^2)^(3/2)*Tanh[x],x]

[Out]

(-2*b*Hypergeometric2F1[-3/2, -3/2, -1/2, -((a*Cosh[x]^2)/b)]*(a + b*Sech[x]^2)^(3/2))/(3*Sqrt[1 + (a*Cosh[x]^
2)/b]*(a + 2*b + a*Cosh[2*x]))

________________________________________________________________________________________

Maple [A]
time = 0.22, size = 58, normalized size = 1.02

method result size
derivativedivides \(-\frac {\left (a +b \mathrm {sech}\left (x \right )^{2}\right )^{\frac {3}{2}}}{3}-a \left (\sqrt {a +b \mathrm {sech}\left (x \right )^{2}}-\sqrt {a}\, \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {a +b \mathrm {sech}\left (x \right )^{2}}}{\mathrm {sech}\left (x \right )}\right )\right )\) \(58\)
default \(-\frac {\left (a +b \mathrm {sech}\left (x \right )^{2}\right )^{\frac {3}{2}}}{3}-a \left (\sqrt {a +b \mathrm {sech}\left (x \right )^{2}}-\sqrt {a}\, \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {a +b \mathrm {sech}\left (x \right )^{2}}}{\mathrm {sech}\left (x \right )}\right )\right )\) \(58\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sech(x)^2)^(3/2)*tanh(x),x,method=_RETURNVERBOSE)

[Out]

-1/3*(a+b*sech(x)^2)^(3/2)-a*((a+b*sech(x)^2)^(1/2)-a^(1/2)*ln((2*a+2*a^(1/2)*(a+b*sech(x)^2)^(1/2))/sech(x)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(x)^2)^(3/2)*tanh(x),x, algorithm="maxima")

[Out]

integrate((b*sech(x)^2 + a)^(3/2)*tanh(x), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 788 vs. \(2 (45) = 90\).
time = 0.58, size = 2312, normalized size = 40.56 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(x)^2)^(3/2)*tanh(x),x, algorithm="fricas")

[Out]

[1/12*(3*(a*cosh(x)^6 + 6*a*cosh(x)*sinh(x)^5 + a*sinh(x)^6 + 3*a*cosh(x)^4 + 3*(5*a*cosh(x)^2 + a)*sinh(x)^4
+ 4*(5*a*cosh(x)^3 + 3*a*cosh(x))*sinh(x)^3 + 3*a*cosh(x)^2 + 3*(5*a*cosh(x)^4 + 6*a*cosh(x)^2 + a)*sinh(x)^2
+ 6*(a*cosh(x)^5 + 2*a*cosh(x)^3 + a*cosh(x))*sinh(x) + a)*sqrt(a)*log(((a^3 + 2*a^2*b + a*b^2)*cosh(x)^8 + 8*
(a^3 + 2*a^2*b + a*b^2)*cosh(x)*sinh(x)^7 + (a^3 + 2*a^2*b + a*b^2)*sinh(x)^8 + 2*(2*a^3 + 5*a^2*b + 4*a*b^2 +
 b^3)*cosh(x)^6 + 2*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3 + 14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^2)*sinh(x)^6 + 4*(14
*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^3 + 3*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x))*sinh(x)^5 + (6*a^3 + 14*a^2*
b + 9*a*b^2)*cosh(x)^4 + (70*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^4 + 6*a^3 + 14*a^2*b + 9*a*b^2 + 30*(2*a^3 + 5*a^
2*b + 4*a*b^2 + b^3)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^5 + 10*(2*a^3 + 5*a^2*b + 4*
a*b^2 + b^3)*cosh(x)^3 + (6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x))*sinh(x)^3 + a^3 + 2*(2*a^3 + 3*a^2*b)*cosh(x)^2
 + 2*(14*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^6 + 15*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(x)^4 + 2*a^3 + 3*a^2*b
+ 3*(6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*((a^2 + 2*a*b + b^2)*cosh(x)^6 + 6*(a^2 + 2*a*
b + b^2)*cosh(x)*sinh(x)^5 + (a^2 + 2*a*b + b^2)*sinh(x)^6 + 3*(a^2 + 2*a*b + b^2)*cosh(x)^4 + 3*(5*(a^2 + 2*a
*b + b^2)*cosh(x)^2 + a^2 + 2*a*b + b^2)*sinh(x)^4 + 4*(5*(a^2 + 2*a*b + b^2)*cosh(x)^3 + 3*(a^2 + 2*a*b + b^2
)*cosh(x))*sinh(x)^3 + (3*a^2 + 4*a*b)*cosh(x)^2 + (15*(a^2 + 2*a*b + b^2)*cosh(x)^4 + 18*(a^2 + 2*a*b + b^2)*
cosh(x)^2 + 3*a^2 + 4*a*b)*sinh(x)^2 + a^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(x)^5 + 6*(a^2 + 2*a*b + b^2)*cosh(x
)^3 + (3*a^2 + 4*a*b)*cosh(x))*sinh(x))*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh
(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + 2*a^2*b + a*b^2)*cosh(x)^7 + 3*(2*a^3 + 5*a^2*b + 4*a*b^2 + b^3)*cosh(
x)^5 + (6*a^3 + 14*a^2*b + 9*a*b^2)*cosh(x)^3 + (2*a^3 + 3*a^2*b)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*s
inh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh
(x)^6)) + 3*(a*cosh(x)^6 + 6*a*cosh(x)*sinh(x)^5 + a*sinh(x)^6 + 3*a*cosh(x)^4 + 3*(5*a*cosh(x)^2 + a)*sinh(x)
^4 + 4*(5*a*cosh(x)^3 + 3*a*cosh(x))*sinh(x)^3 + 3*a*cosh(x)^2 + 3*(5*a*cosh(x)^4 + 6*a*cosh(x)^2 + a)*sinh(x)
^2 + 6*(a*cosh(x)^5 + 2*a*cosh(x)^3 + a*cosh(x))*sinh(x) + a)*sqrt(a)*log(-(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^
3 + a*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*a*cosh(x)^2 + b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + s
inh(x)^2 - 1)*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))
+ 4*(a*cosh(x)^3 + b*cosh(x))*sinh(x) + a)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) - 16*sqrt(2)*(a*cosh(x
)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + (2*a + b)*cosh(x)^2 + (6*a*cosh(x)^2 + 2*a + b)*sinh(x)^2 + 2*(2*a
*cosh(x)^3 + (2*a + b)*cosh(x))*sinh(x) + a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)
*sinh(x) + sinh(x)^2)))/(cosh(x)^6 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6 + 3*(5*cosh(x)^2 + 1)*sinh(x)^4 + 3*cosh(
x)^4 + 4*(5*cosh(x)^3 + 3*cosh(x))*sinh(x)^3 + 3*(5*cosh(x)^4 + 6*cosh(x)^2 + 1)*sinh(x)^2 + 3*cosh(x)^2 + 6*(
cosh(x)^5 + 2*cosh(x)^3 + cosh(x))*sinh(x) + 1), -1/6*(3*(a*cosh(x)^6 + 6*a*cosh(x)*sinh(x)^5 + a*sinh(x)^6 +
3*a*cosh(x)^4 + 3*(5*a*cosh(x)^2 + a)*sinh(x)^4 + 4*(5*a*cosh(x)^3 + 3*a*cosh(x))*sinh(x)^3 + 3*a*cosh(x)^2 +
3*(5*a*cosh(x)^4 + 6*a*cosh(x)^2 + a)*sinh(x)^2 + 6*(a*cosh(x)^5 + 2*a*cosh(x)^3 + a*cosh(x))*sinh(x) + a)*sqr
t(-a)*arctan(sqrt(2)*((a + b)*cosh(x)^2 + 2*(a + b)*cosh(x)*sinh(x) + (a + b)*sinh(x)^2 + a)*sqrt(-a)*sqrt((a*
cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^
2 + a*b)*cosh(x)*sinh(x)^3 + (a^2 + a*b)*sinh(x)^4 + (2*a^2 + 3*a*b)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 + 2*
a^2 + 3*a*b)*sinh(x)^2 + a^2 + 2*(2*(a^2 + a*b)*cosh(x)^3 + (2*a^2 + 3*a*b)*cosh(x))*sinh(x))) + 3*(a*cosh(x)^
6 + 6*a*cosh(x)*sinh(x)^5 + a*sinh(x)^6 + 3*a*cosh(x)^4 + 3*(5*a*cosh(x)^2 + a)*sinh(x)^4 + 4*(5*a*cosh(x)^3 +
 3*a*cosh(x))*sinh(x)^3 + 3*a*cosh(x)^2 + 3*(5*a*cosh(x)^4 + 6*a*cosh(x)^2 + a)*sinh(x)^2 + 6*(a*cosh(x)^5 + 2
*a*cosh(x)^3 + a*cosh(x))*sinh(x) + a)*sqrt(-a)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)
*sqrt(-a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/(a*cosh(x)^4
 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + 2*(a + 2*b)*cosh(x)^2 + 2*(3*a*cosh(x)^2 + a + 2*b)*sinh(x)^2 + 4*(a*
cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x) + a)) + 8*sqrt(2)*(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 +
(2*a + b)*cosh(x)^2 + (6*a*cosh(x)^2 + 2*a + b)*sinh(x)^2 + 2*(2*a*cosh(x)^3 + (2*a + b)*cosh(x))*sinh(x) + a)
*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/(cosh(x)^6 + 6*cosh(
x)*sinh(x)^5 + sinh(x)^6 + 3*(5*cosh(x)^2 + 1)*sinh(x)^4 + 3*cosh(x)^4 + 4*(5*cosh(x)^3 + 3*cosh(x))*sinh(x)^3
 + 3*(5*cosh(x)^4 + 6*cosh(x)^2 + 1)*sinh(x)^2 ...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \operatorname {sech}^{2}{\left (x \right )}\right )^{\frac {3}{2}} \tanh {\left (x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(x)**2)**(3/2)*tanh(x),x)

[Out]

Integral((a + b*sech(x)**2)**(3/2)*tanh(x), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sech(x)^2)^(3/2)*tanh(x),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

________________________________________________________________________________________

Mupad [B]
time = 3.36, size = 45, normalized size = 0.79 \begin {gather*} a^{3/2}\,\mathrm {atanh}\left (\frac {\sqrt {a+\frac {b}{{\mathrm {cosh}\left (x\right )}^2}}}{\sqrt {a}}\right )-\frac {{\left (a+\frac {b}{{\mathrm {cosh}\left (x\right )}^2}\right )}^{3/2}}{3}-a\,\sqrt {a+\frac {b}{{\mathrm {cosh}\left (x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)*(a + b/cosh(x)^2)^(3/2),x)

[Out]

a^(3/2)*atanh((a + b/cosh(x)^2)^(1/2)/a^(1/2)) - (a + b/cosh(x)^2)^(3/2)/3 - a*(a + b/cosh(x)^2)^(1/2)

________________________________________________________________________________________